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Simple shearing flow of a dry soap foam composed of identical Kelvin cells is analysed. 
An undeformed Kelvin cell has six planar quadrilateral faces with curved edges and 
eight non-planar hexagonal faces with zero mean curvature. The elastic-plastic 
response of the foam is modelled by determining the bubble shape that minimizes 
total surface area at each value of strain. Computer simulations were performed 
with the Surface Evolver program developed by Brakke. The foam structure and 
macroscopic stress are piecewise continuous functions of strain. Each discontinuity 
corresponds to a topological change (Tl)  that occurs when the film network is 
unstable. These instabilities involve shrinking films, but the surface area and edge 
lengths of a shrinking film do not necessarily vanish smoothly with strain. Each T1 
reduces surface energy, results in cell-neighbour switching, and provides a film-level 
mechanism for plastic yield behaviour during foam flow. The foam structure is 
determined for all strains by choosing initial foam orientations that lead to strain- 
periodic behaviour. The average shear stress varies by an order of magnitude for 
different orientations. A Kelvin foam has cubic symmetry and exhibits anisotropic 
linear elastic behaviour ; the two shear moduli and their average over all orientations 
are Gmin = 0.5706, G,,, = 0.9646, and G = 0.8070, where stress is scaled by T/V ' /3 ,  
T is surface tension, and V is bubble volume. An approximate solution for the 
microrheology is also determined by minimizing the total surface area of a Kelvin 
foam with flat films. 

1. Introduction 
Soap foams are highly structured fluids in which polyhedral gas bubbles are 

separated by a continuous network of thin liquid films that are stabilized against 
rupture by the presence of surfactants. Applications and early studies of foam flow 
have been reviewed by Kraynik (1988). The structure of a dry foam under static 
conditions consists of individual films with surface tension T and uniform mean 
curvature. The volume fraction of continuous liquid phase is zero in the dry limit; 
Plateau border channels that form along cell edges in wet foams are absent. The 
shape of each film satisfies the Young-Laplace equation 

(1.1) 

where Apk is the pressure difference between adjacent bubbles separated by film k ,  nk 
is a local unit vector normal to film k ,  and the term in parentheses is the sum of the 
principal curvatures. The factor of 2 accounts for both film interfaces. To balance 

Apk = 2 T ( V - n k )  
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FIGURE 1. The regular tetrakaidecahedron on the left has fourteen flat faces: six squares and eight 
regular hexagons. The Kelvin cell on the right has flat quadrilateral faces and non-planar hexagonal 
faces with zero mean curvature. The quadrilateral faces for both polyhedra are perpendicular to 
the x-, y-,  and z-axes in the reference orientation. 

forces and minimize surface energy, three films intersect along cell edges at equal 
dihedral angles of 120" and four edges meet at each vertex at equal tetrahedral angles 
of cos-'(-1/3). These equilibrium conditions were recognized by Plateau (1873). 
Taylor (1976) has shown that Plateau's laws are a mathematical consequence of 
minimizing surface area - a requirement of stable foam structures (see also Almgren 
& Taylor 1976). 

The regular tetrakaidecahedron shown in figure 1 packs to fill space. Two regular 
hexagons and a square meet along each edge. The two hexagons join at the tetrahedral 
angle 109.47' and the dihedral angle between each hexagon and square is 125.26". This 
structure possesses the film-network topology that is necessary to satisfy equilibrium: 
three films meet at each edge and four edges meet at each vertex; however, this 
structure does not have the necessary equal dihedral angles. 

Kelvin (1887) recognized that an equilibrium foam structure could be achieved 
by distorting the faces of the planar tetrakaidecahedron so that they meet at 120"; 
all vertex angles would then be equal to the tetrahedral angle. Each film has zero 
mean curvature and satisfies the nonlinear partial differential equation based on (1.1) 
corresponding to Apk = 0. A single bubble in the equilibrium foam structure is known 
as Kelvin's minimal tetrakaidecahedron or a Kelvin cell and is shown in figure 1 next 
to the regular tetrakaidecahedron. The squares become planar quadrilateral faces 
with curved edges and the hexagons become non-planar saddle surfaces with zero 
mean curvature. Even though planar films have zero mean curvature, no foam in 
equizibrium can be composed entirely of flat films because no polygon with straight 
edges has all vertex angles equal to the tetrahedral angle. 

Kelvin determined an approximate analytical solution for the curved faces. Accurate 
numerical solutions to the full nonlinear PDE based on (1.1) were obtained by 
Reinelt & Kraynik (1993) using finite difference methods. Large uniaxial extensional 
deformations of the foam up to the elastic limit were also analysed. The initial foam 
orientation was chosen with the quadrilateral faces of a Kelvin cell and the principal 
axes of the extensional deformation aligned with the axes of a Cartesian coordinate 
system. In this highly symmetric situation, the quadrilateral faces remain flat and the 
computational domain for the deformed foam is only one quarter of a hexagonal face. 
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In simple shear, the computational domain is much larger even for those orientations 
of the foam that have a high degree of symmetry. 

Here, the elastic-plastic behaviour of a Kelvin foam is determined for quasi-static 
simple shearing deformations. Finite rate effects due to viscous flow in thin films are 
neglected when we compute the evolution of foam structure and effective stress with 
shear strain. Many topological rearrangements of the connected film network occur 
during flow. In a Kelvin foam, a surface shared by two bubbles ‘disappears’ as the 
bubbles pull apart from each other; at the same time, a new surface ‘appears’ where 
two other bubbles come together. We follow Weaire & Kermode (1983) who refer 
to this topological transition as a T1 in the analogous two-dimensional situation. In 
two dimensions, a T1 is triggered when an edge length goes smoothly to zero with 
strain. The corresponding situation in three dimensions - the surface area of a film 
going smoothly to zero with strain triggering a T1 - does not occur in the complete 
solutions examined here. By choosing initial orientations of the foam that lead to 
strain-periodic solutions, the number of unique neighbour-switching transitions is 
reduced. A second type of topological transition, a T2, refers to an entire bubble 
disappearing because all of the gas diffuses out. There is no diffusion between identical 
bubbles with equal pressures; consequently, T2s do not occur in a perfectly ordered 
foam. 

A complete solution is calculated for three different foam orientations. An ap- 
proximate solution, which we refer to as the minimal planar solution, is calculated 
for these and other orientations. Reinelt (1993) has determined a planar solution 
where the dihedral angles between faces remain fixed at their initial values during 
deformation. In contrast, the dihedral angles vary with deformation in the minimal 
planar solutions. 

The following analysis of simple shearing flow for a dry, perfectly ordered foam 
extends to three dimensions the seminal two-dimensional analysis of Princen (1983), 
which was generalized to arbitrary foam orientations by Khan & Armstrong (1986) 
and Kraynik & Hansen (1986). 

Matzke (1946) did not find a single Kelvin cell during meticulous observations 
of several hundred bubbles in carefully prepared foams that he believed to be 
monodisperse. The cells in his disorded foams exhibited an impressive variety of 
topologies. Weaire & Phelan (1994b) have observed Kelvin cells but found that the 
tendency to order is quite limited in bulk foams under normal circumstances. Since 
real bulk foams are disordered, our analysis is clearly a first step toward understanding 
foam flow from a microrheological point of view. 

2. Evolution of foam structure with shear 
2.1. Undeformed foams 

The bubble centres in an unbounded, undeformed Kelvin foam form a body-centred- 
cubic (b.c.c.) lattice. A lattice consists of all points 

where the lattice vectors L1, L2, L3 are linearly independent basis vectors and 
rn = {ml,m2,m3} is any set of integers. Initial orientations of the foam are specified 
by applying rotations to a reference structure, which has a bubble centred at the 
origin of a Cartesian coordinate system with the vectors normal to the quadrilateral 
faces of a Kelvin cell aligned with the x-, y-, and z-axes. A set of lattice vectors for 
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L 

is 

where V is the volume of a Kelvin cell. We set V = 1 in all calculations which is 
equivalent to scaling length by V1/3. 

To get other orientations of the foam, the reference structure is rotated about they- 
axis through the angle 4, then about the x-axis through the angle 8, and finally about 
the y-axis through the angle y, ;  all rotations are in the counterclockwise direction. 
The initial lattice vectors of the undeformed foam in the new orientation are given 
by Lf = Q Lp, where 

C O S ~  0 sin4 

-sin$ 0 C O S ~  1 O I  
0 cos8 -sin8 

(2-3) 

[cosy, o 1 singy ] [I o 
Q =  0 

- s h y  0 cosy, 0 sin8 cos8 

is a product of three rotation matrices. There are different conventions for defining 
the Euler angles given in (2.3) ; our choice simplifies the classification scheme discussed 
below. 

2.2. Foam deformation 
For homogeneous deformations, the lattice vectors are given by Li = F L f ,  where F 
is the deformation gradient. An undeformed foam with different initial orientations 
is sheared in the xy-plane with 

F =  [ A  ; ;] 
0 0  

Here, y = p t is the shear strain, y is the shear rate, and t is time. 
The strain-periodic orientations of a b.c.c. lattice are classified in the following way. 

First, we choose values for the angles 4 and 8 so that the lattice points all lie in 
parallel planes corresponding to y = i Ay, where i is an integer and Ay is the spacing 
between planes. We order these solutions with decreasing Ay. Second, we choose 
the angle y, so that we get a strain-periodic solution. We order these solutions with 
increasing strain period. Table 1 gives the angles that define the orientations with the 
smallest strain periods. The orientations labelled l.x, 2.x, and 3.x have separation 
distance Ay equal to V1/3/21/6, V1/3/22/3, and V1/3/(21/631/2) respectively. 

The foam is deformed by increasing the shear strain. At each value of y ,  the 
structure with minimal surface area is computed. The shear strain is increased until 
a solution that satisfies Plateau’s laws cannot be found. This point of instability, an 
elastic limit, is always associated with shrinking faces, but the area of these faces does 
not go smoothly to zero with strain. Stability is restored by topological transitions 
(Tls) that result in a Kelvin foam with different geometry and lower surface area. 

2.3. Topological transitions 
Because of the perfect order and symmetry of a Kelvin foam, there are three basic 
T1 types; we refer to them as standard, point, and triple transitions (see figure 
2). Schwarz (1965) observed and classified topological rearrangements in disordered 
polyhedral foams. He found standard transitions but no point or triple transitions, 
which stem from the perfect order of a Kelvin foam. 
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- - 
Orientation t a n 4  tanQ tanyi y p  rJ X) NI N2 

- 

1.1 0 1 1 1 4  J3/2 0.0818 0.0451 -0.0623 
1.2[ 0 1 cm 8 0.7043 0.8993 -0.5307 
1.3P 0 1 0 2 0.1800 0.0613 -0.2961 
1.4 
1.5 
1.6 
1.7 
2.1p 
2.2‘ 
2.3 
3.1‘ 
3.2 

0 1 3 1 4  

0 1 J 5  
0 1 $16 

0 1 5 j 4  
0 0 0 
0 0 1 
0 0 112 
1 114 0 
1 I/$ a3 

0.1128 
J19/2 0.1579 

0.1468 

J27/2 0.3299 
2 0.2242 

2$ 0.4894 
2 8  0.2193 
3 1 4  0.5298 
2 8  0.1460 

0.2029 
0.0104 
0.2133 
0.4646 
0.5097 
1.3606 
1.0112 
0.4471 
0.8906 

-0.0347 
-0.2708 
-0.1128 
-0.1955 
-0.4235 
-0.9200 
-0.7606 
-0.2807 
-0.5814 

TABLE 1. Strain-periodic orientations for simple shear. Orientations that have point ( p )  or triple 
( t )  transitions are indicated; these initial structures have mirror symmetry about the (x, y)-plane. 
Minimal planar results: Fxy is the average shear stress, El = Ti,, - Syy and N 2  = a,, - a,, are the 
normal stress differences. The stress scale T / V ’ / 3  is the same in all tables. 

FIGURE 2. Shrinking faces and edges on highly distorted Kelvin cells just prior to the three basic 
topological transitions: (a) standard T1, orientation 1.1, y = 0.60, as in figures 3 ( c )  and 8(c); ( b )  
point T1, orientation 1.3, y = 0.54, compare with figure 4(c); (c )  triple T1, orientation 1.2, y = 4, 
as in figure 4(g). The standard T1 for (a )  occurs when the short edges go to zero length at y = 0.617. 
The point T1 for ( b )  occurs at y = 0.548. The triple T1 for ( c )  occurs when opposite ‘long’ edges of 
the shrinking hexagonal face touch when y = 1.47. 
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Before describing the T1 types, it is useful to review geometrical features that are 
common to all deformed Kelvin foams. A Kelvin cell has 14 faces, 36 edges, and 24 
vertices, but all of these features are shared with neighbours so there are only 7 faces, 
12 edges, and 6 vertices in a unit cell. The six vertices on a hexagonal face and the 
twelve edges on three quadrilaterals oriented in different directions are representative. 
The seven faces that can be seen in figure 1, for example, are representative; those 
that cannot be seen are redundant. As a consequence of spatial periodicity, the entire 
foam geometry is determined by translating these representative features through 
linear combinations of the lattice vectors. The centre of each face is located at 
the midpoint between two bubble centres and moves affinely with the homogeneous 
deformation. From symmetry, the centre of each face is also located at the midpoint 
between opposite vertices; thus, only three of the six representative vertex positions 
are unique. Furthermore, each face is symmetric about its centre so there are only 
six unique edge lengths. Each edge is shared by two hexagons and one quadrilateral. 
In the following description of the Tls, it is useful to keep in mind that the Kelvin 
cell gains and loses neighbours and faces, and some faces gain or lose edges, but 
each topological rearrangement just results in a Kelvin cell with different shape. The 
bubble centres (and therefore, the centre of each face separating old cell neighbours) 
do not change position during a T1. 

Standard transitions occur when one of the six unique edge lengths tends to zero 
(consult figures 2a and 3); the vanishing edge corresponds to opposite edges of a 
quadrilateral face and opposite edges of two hexagonal faces. The two hexagonal 
faces become quadrilaterals and the quadrilateral face degenerates to form a ‘new’ 
edge. This situation is unstable because Plateau’s laws are violated: five different 
edges meet at each vertex of the ‘new’ edge instead of the required four; and the 
‘new’ edge is shared by four cells instead of the required three. Two of these cells 
were neighbours that shared the entire shrinking quadrilateral face; the other two 
cells were not neighbours. Foam topology consistent with Plateau’s laws is restored 
when the original cell neighbours separate and a ‘new’ quadrilateral face emerges 
from the unstable edge. The ‘new’ face is shared by the new cell neighbours. Two of 
the original hexagons remain hexagons. It is important to note that the consequences 
of a standard transition are unique. 

Point and triple transitions occur when the foam structure possesses mirror sym- 
metry about the (x,y)-plane and two of the six unique edge lengths tend to zero 
simultaneously, as shown in figures 2 and 4. A point transition occurs when the 
shrinking edges are on the same quadrilateral, as shown in figure 2(b). Since the 
lengths of opposite edges are equal, all four edges contract and the quadrilateral 
tends to a point. The shrinking quadrilateral face in figure 4(a-c) is bisected diag- 
onally by the (x,y)-plane. In general, there are two possible standard transitions 
associated with each quadrilateral face depending on which set of opposite edges 
vanishes. A point transition requires a choice between these two standard transitions. 
This choice is not significant because the resulting foam structures are mirror images 
of each other with respect to the (x,y)-plane, and they have the same stress. 

A triple transition occurs when the shrinking edges are on different quadrilaterals. 
This can happen when a quadrilateral face is bisected crosswise by the (x,y)-plane, 
as shown in figures 2(c) and 4(e-h). Two of the unique quadrilateral faces are mirror 
images of each other. As the foam is strained, opposite sides of these quadrilaterals 
and four sides of a hexagonal face all tend to zero length. As a consequence, 
three of the seven unique faces shrink simultaneously and all three corresponding 
cell neighbours are lost, which motivitated us to call this a triple transition. For 
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FIGURE 3. Standard topological transition for orientation 1.1 with (a) y = 0, ( b )  0.30, (c )  0.60, and 
( d )  0.62. Cell neighbours in (a), (b) ,  and (c )  share the quadrilateral face that shrinks as y increases. 
The T1 occurs when opposite edges of the quadrilateral face go to zero length at y = 0.617; original 
cell neighbours separate and a ‘new’ face forms between the new neighbours in ( d ) .  Each Kelvin 
cell is shown from a slightly different viewing angle in figure 8. The view of (c )  is also different in 
figure 2(a). 

some orientations that are not shown, the quadrilateral crossing the (x, y)-plane 
has a shrinking edge and there is a standard transition. Further details about the 
orientations and transitions are given in Reinelt (1993). 

3. Macroscopic stress 
The instantaneous macroscopic stress tensor 0 for the foam is calculated by aver- 

aging the local stress over the unit cell. Reinelt & Kraynik (1993) evaluated the stress 
for a Kelvin foam under static conditions by accounting for all seven unique faces of 
a deformed Kelvin cell and obtained 

(3.1) 

where P b  is the pressure inside each bubble, T is surface tension, V is the bubble 
volume, I is the identity matrix, nk is a unit vector normal to the kth face, ni is the 
transpose of nk, and dA is the differential area element. Since each film has two 
interfaces, the film tension is 2T. The shear stress cxY can be evaluated using (3.1) or 
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FIGURE 4. Evolution of foam geometry with strain for orientation 1.3 with (a) y = 0, ( b )  0.30, 
(c) 0.50, just before a point transition, and ( d )  0.55; and orientation 1.2 with ( e )  y = 0, (f)  0.50, 
(8) 4, just before a triple transition, and ( h )  1.50. Topological transitions as in figures 2(b) and 
2(c).  Viewing angle as in figure 3. 

it can be evaluated from the surface energy using 

(3.2) 

Here, S is the total surface area of a bubble and s k  refers to the kth interface. Our 
calculations using the two methods give consistent results. 

The shear modulus G is the initial slope of the stress-strain curve. The cubic 
symmetry of an undeformed Kelvin foam implies anisotropic linear elastic behaviour 
with two independent shear constants (Love 1944; Nye 1985), which we label Gmin 
and Gmax. These labels anticipate our results because symmetry alone does not give 
the relative magnitude of the two positive constants. Cubic symmetry gives the 
orientation dependence of the shear modulus as 

G = G m a x  + 2 (Gmin - G m a x ) ( Q : l Q &  + Q:2Q:2 + Q:,Q?,) (3.3) 
where Qij  are matrix elements given in (2.3). An average shear modulus G is defined 
by integrating over all possible orientations of the foam 

G = L [ l n c G  STC2 s inddq5dOdy={ G m i n + j  G m a x .  (3.4) 

For spatially periodic foams, viscometric functions are evaluated by averaging the 
instantaneous stress over time. When the foam structure and stress are periodic with 
strain 

(3.5) 

where is the instantaneous stress given in (3.1), 3 is the time-average stress, and yp 
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- 
Gm,, G,,, G 

Complete solution 0.5706 0.9646 0.8070 
Minimal planar solution 0.55254 0.96965 0.80281 
Fixed-angle solution (energy) 0.60952 0.97788 0.83054 
Fixed-angle solution (force) 0.79370 0.91649 0.86737 

TABLE 2. The shear moduli were calculated using the force and energy methods, which correspond 
to (3.1) and (3.2) respectively. The two methods agree for the complete solution as expected. They 
also agree for the minimal planar solution, which is not expected. The two methods give very 
different results for the planar solution with fixed dihedral angles. 

is the strain period. The time-average shear stress can also be evaluated from cxy in 
(3.2). This average includes contributions from all intermediate foam structures and 
removes the explicit dependence on time associated with a spatially periodic model. 

4. Results 
4.1. Minimal planar solution 

Before solving the complete minimal surface problem, we develop an approximate 
solution that assumes planar faces. In previous analyses, Reinelt & Kraynik (1993) 
and Reinelt (1993) assumed that the dihedral angle between faces remains constant 
during deformation. The two dihedral angles of a regular tetrakaidecahedron are 
109.47" and 125.26'; equilibrium requires 120", which of course cannot be satisfied by 
flat faces. Here, we relax the constant-angle condition and seek the planar solution 
at each value of strain that has minimal surface area. 

As discussed above, the centre of each face moves affinely with the homogeneous 
deformation and there are three unique vertices to determine. The two diagonals 
through the midpoint of a quadrilateral face specify a plane and its normal. The 
three diagonals through the midpoint of a hexagonal face do not necessarily lie in the 
same plane. Requiring these diagonals to be coplanar provides a constraint for each 
of the four hexagonal faces. For each set of face centres, the objective is to minimize 
the total surface area of the foam as a function of the nine coordinates that specify 
the three unique vertices subject to the four constraints. 

Table 2 lists the minimum, maximum, and average shear moduli for the minimal 
planar solution. For orientation l.x, the shear modulus in (3.3) reduces to G = 
G,,, + ( G m i n  - G,,,) sin' y .  The maximum value is calculated from orientation 1.2 and 
the minimum value is calculated from orientation 1.3 (see table 1) .  The shear modulus 
for orientations 2.s and 3.x are G = G,,, and G = G,,, + (Gmin - Gmax)( 1 + sin2 y) /3  
respectively. 

For comparison, the shear modulus is also given for the complete solution discussed 
in the next section and for the planar solution with constant dihedral angles. Note 
that the approximate solutions do not provide an upper bound on the shear modulus; 
Gmin for the minimal planar solution is lower than the corresponding value for the 
complete solution. It is possible for this to occur because the initial structures for the 
approximate and complete solutions are not the same. Agreement between the shear 
stress calculated from the force and energy methods does not necessarily imply that 
an accurate value of the shear stress has been determined. The two methods agree 
to five decimal places for the minimal planar solution, but the results differ from 
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FIGURE 5. Shear stress ox) as a function of y for orientation 1.1, minimal planar solution. The 
stress scale T/V' / '  is the same in all figures. 

the complete solution in the second decimal place. The minimal planar solution is 
superior to the planar solution with constant dihedral angles. 

Figure 5 shows the instantaneous shear stress for orientation 1.1 which has the 
smallest strain period. This orientation has two standard transitions. In each of these 
transitions one of the six edge lengths tends to zero continuously with increasing 
shear strain. Since this is a planar model, the area of the quadrilateral face also 
tends to zero continuously with strain and vanishes to a line segment. The Kelvin 
cells form layers with bubble centres in planes of constant y. At the end of each 
strain period the cells have shifted position relative to the layer above and below. 
The instantaneous normal stress differences, N1 = cixx - ciYy and N2 = ciyy - ozz, are 
shown in figure 6. The time-average stresses are given in table 1. 

There is a second type of standard transition in which an edge length does not 
tend to zero continuously with strain. Approximately 20% of the transitions for 
the orientations in table 1 are of this type. Just before the transition the shrinking 
edge length is small but finite, ranging from 0.6% to 7.3% of that in an undeformed 
foam. With a very small increase in strain for minimal planar solutions) the 
edge length drops to zero triggering a T1. This is reminiscent of behaviour near the 
turning point calculated by Reinelt & Kraynik (1993) for large uniaxial extension of 
a Kelvin foam. 

For orientation 1.2, there is one triple transition per cycle. In the minimal planar 
solution, two of the six edge lengths and the area of three of the seven faces tend to 
zero continuously with strain. The first transition occurs when y is greater than y p ,  
so the foam never returns to its undeformed structure during simple shearing flow. 
The shear stress at a triple transition tends to be higher than it is for a standard 
transition. Note that the three orientations in table 1 that have triple transitions also 
have the three highest values of 3,. As discussed by Reinelt (1993), the (x, y)-planar 
cross-section of an orientation with triple transitions is similar to a perfectly ordered 
two-dimensional foam, which has hexagonal cells. The results for orientations with 
triple transitions are significantly different from other cases. Clearly, it is not prudent 
to draw conclusions from a single orientation of a Kelvin foam. 
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FIGURE 6. Normal stress differences N1 = u, - uyy and N2 = uyy - uzz as a function 

of y for orientation 1.1, minimal planar solution. 
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FIGURE 7. Time-average shear stress FXy versus orientation angle w for orientations l .x, 2.x, and 
3.x: 0, orientation 1.x; 0, orientation 2.x; x, orientation 3.x. Extra data points for orientation 2.x 
are plotted because this orientation is symmetric about 1~ = 45". The largest three values shown 
correspond to orientations with triple transitions. 

v/ (deg.1 

Figure 7 shows Txy for different orientation angles y. Even though all of the results 
have been plotted on a single graph, there is no significant relationship between the 
values of 1~ for the three different classes, l.x, 2.x, and 3.x. 

4.2. Complete solution 
The Kelvin cell with minimal surface area shown in figure 1 represents the shape 
of each bubble in an undeformed perfectly ordered foam, where each cell sits on a 
b.c.c. lattice. Brakke (1977, 1992, 1995) has computed the geometry of a Kelvin foam 
with his Surface Evolver program, which converges to a minimal surface by simulat- 
ing the process of evolution by mean curvature. We have used the Surface Evolver to 
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(e)  (f 1 k) (h)  
FIGURE 8. Evolution of foam geometry with strain for orientation 1.1, which has the smallest strain 
period y p  = J3/2. ( a )  y = 0, ( 6 )  0.30, ( c )  0.60, ( d )  0.62, ( e )  0.80, ( f )  0.99, (g) 1, and ( h )  y p .  Standard 
topological transitions occur when opposite edges of shrinking quadrilateral faces go to zero length 
at y = 0.617 and y = 0.998. The Kelvin cells in (a) and ( h )  have identical shape but some neighbours 
are different as a consequence of the Tls. All views are along the z-axis; this is slightly different 
from figure 3, which contains different views of (a-d). 

analyse large extensional deformations of a Kelvin foam, the problem originally solved 
by Reinelt & Kraynik (1993) using finite difference methods. The Surface Evolver and 
finite difference results are in agreement. We have also used the Surface Evolver to 
compute the results reported here. To determine the shape of the curved surfaces, each 
face is subdivided with triangular facets. Each n-sided face normally has 42n facets, 
where &’ is the level of refinement. We typically use &’ = 3, e.g. each hexagonal face 
has 384 facets. The shape of each facet surface can be represented by a linear function, 
giving flat facets, or by a quadratic function, which improves accuracy. As the foam is 
deformed by increasing y we reduce the number of facets on faces that shrink; this im- 
proves convergence of the calculation. Available computer memory and speed permit 
the use of quadratic facets and 8 = 5 to verify the accuracy of our computations. 

The Surface Evolver was used to compute complete solutions for the first three 
orientations in table 1. Figure 8 shows the evolution of foam structure for orientation 
1.1. The edges of the quadrilateral faces bow out so that they meet at the tetrahedral 
angle. When a quadrilateral face shrinks with increasing strain, one of the six unique 
edge lengths tends to zero continuously with strain, but the area of the quadrilateral 
face remains finite (see figures 2a and 3). When an edge vanishes, the foam structure 
is unstable and the shrinking face disappears as part of the standard T1 discussed 
above. Figure 9(a-c) shows the instantaneous shear stress for the complete and 
minimal planar solutions for orientations 1.1, 1.2, and 1.3. 

For orientations 1.1 and 1.3, the transitions for the complete solution are slightly 
delayed when compared to the minimal planar solution, and the time-average shear 
stress is higher for the complete solution. 

Orientation 1.2 only has a single triple transition per cycle. A hexagon and two 
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FIGURE 9. Shear stress cXy versus y for orientations (a )  1.1, ( b )  1.2 and ( c )  1.3. -, complete 

solution; -, minimal planar solution. The periods are y p  = m, 4, and 2 as given in table 1. 

quadrilaterals shrink simultaneously, as shown in figures 2(c) and 4(e-h). Opposite 
edges of the shrinking hexagon that are not contracting bow in and eventually touch 
at their centre triggering a T1. This transition precedes the corresponding minimal 
planar transition and the time-average shear stress is smaller for the complete solution. 
All edge lengths and face areas are finite when this triple transition is initiated. 

For orientation 1.3, the first transition is a point transition of the turning point 
type; the four equal edge lengths of the shrinking quadrilateral face are small but 
finite, as shown in figures 2(c) and 4(a-d). The next two are standard transitions 
with an edge length tending to zero continuously. The last transition is a standard 
transition of the turning point type. 

Table 3 shows the time-average viscometric functions. The results for Oxy are 
graphed in figure 10 along with the minimal planar results for orientations 1.x. 
The time-average normal stress differences are graphed in figure 11. The difference 
between minimal planar and complete solutions for a given orientation are much 
smaller than the variation between different orientations. For this reason, we do not 
calculate the complete solution for all the different orientations shown in table 1. 
Clearly, finding an accurate solution to the complete problem at each value of 
strain is much more computationally intensive than determining the minimal planar 
solution. 
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1.1 0.1191 0.0535 -0.0705 
1.2* 0.6168 0.7154 -0.4182 
1.3P 0.2040 0.0644 -0.3058 
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TABLE 3. Complete solutions: Zxy is the average shear stress, = Zxx - Fyy and N2 = Zyy - T2, 

are the normal stress differences. Point ( p )  and triple ( t )  transitions are indicated. 
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FIGURE 10. Time-average shear stress ZXy versus orientation angle y~ for orientations 1.x: 
0, minimal planar solution; x, complete solution. 
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FIGURE 11. Time-average normal stress differences N1 = B,, - uyy and N2 = uyy. - u,, versus 
orientation angle y~ for orientation 1.x: 0, N1 minimal planar solution; 0, N2 minimal planar 
solution; x, complete solution. 
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5. Comparison with experiments and discussion 
As discussed in the introduction, topological transitions in dry, two-dimensional 

foams are triggered by an edge length going to zero continuously with strain. The 
analogous three-dimensional event - the area of a face tending to zero continuously 
with strain triggering a T1 - does not occur. In a Kelvin foam, a T1 is triggered by an 
edge length going to zero, a turning point where an edge length is small, or opposite 
edges of a hexagonal face touching each other. The last situation only occurs for 
highly symmetric orientations of a Kelvin foam and is unlikely to occur in disordered 
foams. 

Princen & Kiss (1986) have measured the static shear modulus of a series of 
concentrated oil-in-water emulsions with polydisperse drop-size distributions. By 
taking the limit as Q, -+ 1, where Q, is the volume fraction of the disperse phase, their 
result becomes G = 0.509 T/R32, where R32 is the surface-volume mean drop radius 
that characterizes spherical drops in emulsions diluted with excess water. 

For a Kelvin foam, R32 is calculated from V = (4/3)nR;,. In units of T/R32, the 
shear moduli for the complete solution lie in the range 0.354 < G < 0.598 with an 
orientation-average of 0.500. The shear moduli for the minimal planar solution satisfy 
0.343 < G < 0.602 with an average of 0.498. The average shear moduli agree quite 
well with the empirical correlation. 

The dynamic (or viscometric) yield stress VXy for dry foams is a direct result 
of the frequency and magnitude of the energy jumps associated with topological 
transitions. In fact, using the energy method, the shear stress integrated over a strain 
period is exactly the difference in surface energy summed over all of the jumps. 
This connection between energy jumps and dynamic yield stress was recognized by 
Bonnecaze & Brady (1992) for electrorheological fluids and Okuzono, Kawasaki & 
Nagai (1993) for two-dimensional random foams. 

Princen (1985) measured the yield stress for highly concentrated emulsions and 
obtained F,,, in the semi-empirical relation Fxy = 1.277 (T/R32) Q,'/3Fmx(Q,). It is 
difficult to extrapolate the experimental data for F,,, to Q, = 1 (dry foams) for two 
reasons: first, F,,, increases rapidly as Q, -+ 1; second, there are different curves for 
F,,, depending on whether the actual film thickness in the experiments was 0.00, 
0.05, or 0.10 pm. There is considerable variation between the extrapolated values for 
the three different curves. For reference, the last data point on the curve for zero film 
thickness is F,,, = 0.1 and SXy = 0.13 T/R32 at Q, = 0.97. 

The results for the minimal planar solution satisfy 0.0818 T / V ' / 3  = 0.0507 T/R32 < 
5,. < 0.4369 T/R32 = 0.7043 T, /V1l3 .  If the three orientations with triple transitions 
are eliminated, then the top of the range is reduced by a factor of 2 to 0.2047 T/R32. 
For the complete problem, ZXy = 0.074, 0.383, and 0.127 T/R32 for orientations 1.1, 
1.2, and 1.3. 

The time-average shear stress of a Kelvin foam exhibits strong dependence on 
orientation - much stronger than the shear modulus, which varies by a factor of 
2. This demonstrates the importance of examining orientation effects. Orientation 
dependence, which stems from perfect order and strong symmetry in a Kelvin foam, 
will decrease with increasing N, the number of distinct bubbles with different shape in 
the unit cell. A disordered foam has isotropic rheological behaviour. The shortcomings 
of a Kelvin foam motivate examination of foam structures with large A". Weaire & 
Phelan (19944 have described a structure with eight bubbles and smaller surface area 
than a Kelvin cell. Kraynik & Reinelt (1996) have shown that orientation dependence 
of the shear modulus is an order of magnitude smaller for a Weaire-Phelan foam. 
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This structure is one of 24 known tetrahedrally close-packed (t.c.p.) crystal structures 
that contain from 6 to 228 ‘bubbles’ per unit cell (Rivier 1994). Foam geometries 
based on t.c.p. structures provide many candidates for investigating the microrheology 
of foams. The rheology of large t.c.p. foams is undoubtedly more representative of 
real bulk foams than a Kelvin cell. 
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